

Contents

Contents:

	Overview
	Installing

	Configuration

	Modules
	Authentication
	API Reference

	Caching
	API Reference

	Database
	API Reference

	Input/Output
	API Reference

	Logging
	API Reference

	Persistence
	API Reference

	PyHP / Python Hypertext Processor
	How To
	PyHP Syntax

	API Reference

	Regular
	API Reference

	Scraping
	How To
	Step Instructions

	Scraping feeds

	API Reference

	Settings
	API Reference

	Timing
	API Reference

	TSV
	API Reference

Overview

Doreah is a useful little toolkit that offers shortcuts and abstractions for common operations.

Installing

Install doreah with the simple command pip install doreah.

Configuration

Each module can be configured with a call to the function config(). However, it is recommended to use a .doreah configuration file in your project’s directory. This way, the correct configuration will be used from the first import.

The .doreah file follows a simple key-value-format where the key is comprised of the module name, a dot and the configuration parameter, e.g.:

logging.verbosity = 2

Modules

	Authentication
	API Reference

	Caching
	API Reference

	Database
	API Reference

	Input/Output
	API Reference

	Logging
	API Reference

	Persistence
	API Reference

	PyHP / Python Hypertext Processor
	How To
	PyHP Syntax

	API Reference

	Regular
	API Reference

	Scraping
	How To
	Step Instructions

	Scraping feeds

	API Reference

	Settings
	API Reference

	Timing
	API Reference

	TSV
	API Reference

Authentication

API Reference

Caching

API Reference

Database

API Reference

Input/Output

API Reference

Logging

API Reference

Persistence

API Reference

PyHP / Python Hypertext Processor

How To

PyHP Syntax

Any strict (XML-compliant) html document is a valid pyhp document. Server-side processing
can be achieved with the help of <pyhp> nodes. Their meaning is determined by their arguments.
Nodes without any arguments are code blocks: they may contain arbitrary python code. Indentation
can be chosen to match the position in the xml tree, but must then be consistent within the block.
The first and last line (those containing the <pyhp> and </pyhp> tags) must not contain code.

The following pyhp nodes are available

	echo

	The supplied expression will be evaluated and returned as string

<pyhp echo="len(stuff)" />

	if

	Everything within this node is only sent to the client if the condition evaluates to true

<pyhp if="me['rank'] == 1 or !me.isintouchwithreality()">I'm the best!</pyhp>

	for loop

	Everything within this node will be evaluated for each element in the iterable / mapping

<pyhp for="city" in="patriarchs" separator=" | ">The current patriarch of <pyhp echo="city" /> is <pyhp echo="patriarchs['city']" />. </pyhp>

	assignment

	Assigns to a variable

<pyhp save="complicated_db_call(somestuff)[len(somelist)]['info']['important']" as="importantinfo" />

	include

	Includes another pyhp file at this location.

<pyhp include="sidebar.pyhp" />

You can also access variables inside arguments of regular html nodes with curly braces:

<pyhp echo="site.name" />

API Reference

Regular

API Reference

Scraping

How To

Step Instructions

This module provides a simplified interface to parse XML trees with a set of predefined steps.
These need to be supplied in a list as dicts with the keys steptype and ‘instruction’, although
the second may be omitted for steps that do not have any further instructions.

The following steps are possible:

	
	Steps that work for both single elements and lists:

	
	xpath

	follows the xpath down the tree, returns first element (node -> node or string)

	prefix

	adds a prefix to the string (string -> string)

	suffix

	appends a suffix to the string (string -> string)

	rmprefix

	removes a prefix if present (string -> string)

	regex

	Replaces the string matched by the supplied regex with its first capture group (string -> string)

	last

	splits the string and returns last element (string -> string)

	
	Steps that work for single elements and return a single element:

	
	follow

	follows the specified link and returns the root node of the resulting document (string -> node)

	
	Steps that work for single elements and split them into a list:

	
	split

	splits the string (string -> stringlist)

	makelist

	turns an element into a list consisting of that element (string -> stringlist, node -> nodelist)

	xpathls

	follows the xpath down the tree, returns all elements (node -> nodelist or stringlist)

	
	Steps that work for lists and merge them back into a single element:

	
	pick

	picks the n-th element from the list (nodelist -> node, stringlist -> string)

	combine

	combines all strings of the list (stringlist -> string)

Scraping feeds

parse_all() is a function to scrape any well-structured feed of regular
elements. Since its arguments may be confusing, let’s look at a simple example.
Say we want to scrape all locations of a website that shows 3 entries per page
and its URLs look like this:

https://coolplaces.tld/top?start=0

https://coolplaces.tld/top?start=3

https://coolplaces.tld/top?start=6

etc…

We would then supply base_url="https://bestgallery.tld/newest?start={page}",
start_page=0 and page_multiplier=3 (since Page 0 needs a
0, page 1 needs a 3 and so on).

If our page has a weird URL logic, we can simply supply a function instead that
takes the logical page number (0, 1, 2, …) as input and returns the string that
should be inserted into the URL.

Now let’s have a look at the relevant part of our webpage:

<body>
 <div id="cards_area">
 <div class="place_box" id="place_box_rivendell">
 <div style="background-image('/rivendell.png');"></div>
 <h3 class="place_name">Rivendell</h3>
 Leader: Elrond
 </div>
 <div class="place_box" id="place_box_gondolin">
 <div style="background-image('/tumladen_vale.jpg');"></div>
 <h3 class="place_name">Gondolin</h3>
 Leader: Turgon
 </div>
 <div class="place_box" id="place_box_holymountain">
 <div style="background-image('/oiolosse.png');"></div>
 <h3 class="place_name">Taniquetil</h3>
 Leader: Manwë
 </div>
 </div>
</body>

As steps_elements we need to supply the steps to acquire a list of elements - simple enough:

[
 {"type":"xpath","instruction":"//div[@id='cards_area']//div[@class='place_box']"}
]

Now, we want to return several pieces of information from each element. As steps_content, we pass:

{
 "identifier":[
 {"type":"xpath","instruction":"./@id"},
 {"type":"rmprefix","instruction":"place_box_"}
],
 "image_url":[
 {"type":"xpath","instruction":"./div/@style"},
 {"type":"regex","instruction":"background-image('(.*)');"}
],
 "name":[
 {"type":"xpath","instruction":"./h3/text()"}
],
 "leader":[
 {"type":"xpath","instruction":"./span/text()"},
 {"type":"regex","instruction":"Leader: (.*)"}
]
}

This will iterate through all places and save the according values in a dictionary:

[
 {
 "identifier": "rivendell",
 "image_url": "rivendell.png",
 "name": "Rivendell",
 "leader": "Elrond"
 },
 {
 "identifier": "gondolin",
 "image_url": "tumladen_vale.jpg",
 "name": "Gondolin",
 "leader": "Turgon"
 },
 {
 "identifier": "holymountain",
 "image_url": "oiolosse.png",
 "name": "Taniquetil",
 "leader": "Manwë"
 },
]

If we pass the argument stop=42, the parsing will stop after we have found 42
arguments. Alternatively (or additionally), we can pass as stopif the following:

{
 "leader":lambda x: x=="Morgoth" or x=="Sauron",
 "image_url":lambda x: x.endswith(".gif")
}

This means that if we parse a place with the leader “Morgoth” or “Sauron”, or if
we parse a place that has a .gif-image, we immediately stop parsing.

API Reference

Settings

API Reference

Timing

API Reference

TSV

API Reference

Index

 _static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Overview

 		
 Installing

 		
 Configuration

 		
 Modules

 		
 Authentication

 		
 API Reference

 		
 Caching

 		
 API Reference

 		
 Database

 		
 API Reference

 		
 Input/Output

 		
 API Reference

 		
 Logging

 		
 API Reference

 		
 Persistence

 		
 API Reference

 		
 PyHP / Python Hypertext Processor

 		
 How To

 		
 API Reference

 		
 Regular

 		
 API Reference

 		
 Scraping

 		
 How To

 		
 API Reference

 		
 Settings

 		
 API Reference

 		
 Timing

 		
 API Reference

 		
 TSV

 		
 API Reference

_static/ajax-loader.gif

